Compound Propositions, Truth Table

Lecture 2

Compound Propositions

Propositions can be denoted by propositional variables such as p, q, r, s, etc.

Examples:

- p = New Delhi is the capital of India.
- q = 45 is a prime number.

We will now focus on producing new propositions from existing propositions.

Definition: A compound proposition is for operators such as \neg , \lor , \land , \rightarrow , and \leftrightarrow .

Definition: A compound proposition is formed from existing propositions using logical

Negation

Definition: Let p be a proposition. The **negation** of p, denoted by $\neg p$, is the statement "It is not the case that *p*".

Examples:

- p = Sam uses an Android phone.
- $\neg p =$ It is not the case that Sam uses an Android phone.
- - q = Emma's PC has at least 256 GB of memory.

 $\neg q =$ It is not the case that Emma's PC has at least 256 GB of memory.

 $\neg p$ is read as "not p." The truth value of $\neg p$ is the opposite of the truth value of p.

 $\neg p = \text{Sam does not use an Android phone.}$ (more simply expressed negation.)

 $\neg q = \text{Emma's PC}$ has less than 256 GB of memory. *(more simply expressed negation.)*

Truth Table

Definition: A truth table of a compound proposition is a structured representation that presents all **possible combinations of truth values** of propositions used in that compound proposition and the **corresponding truth value** of it.

Truth Table of negation (¬):

Conjunction

- statement "*p* and *q*".

Example:

- p = Sam uses an Android phone.
- q = Sam uses a Macbook.
- $p \land q = Sam$ uses an Android phone and Sam uses a Macbook.

Definition: Let p and q be propositions. The **conjunction** of p and q, denoted by $p \wedge q$, is the

The conjunction "p and q" is true when both p and q are true and is false otherwise.

Disjunction

statement "p or q".

The disjunction "p or q" is false when both p and q are false and is true otherwise. **Example:**

- p = Sam uses an Android phone.
- q = Sam uses a Macbook.

 $p \lor q = Sam$ uses an Android phone or Sam uses a Macbook.

Note: Disjunction corresponds to "inclusive or" of English, not "exclusive or". Students who have taken calculus **or** analysis can take this class.

Soup or salad comes with the main course.

Definition: Let p and q be propositions. The **disjunction** of p and q, denoted by $p \lor q$, is the

Truth Tables of Conjunction and Disjunction

Truth Table of conjunction (\)

р	<i>q</i>	$p \wedge q$	
F	F	F	
F	T	F	
T	F	F	
T	T	T	

Truth Table of disjunction (\/)

is the statement "if p, then q".

p is called the **hypothesis** and q is called the **conclusion**.

Truth Table of conditional statement (\rightarrow)

Definition: Let p and q be propositions. The **conditional statement**, denoted by $p \rightarrow q$,

Example 1:

- p = Alice scores 100% in Major.
- q = Alice gets an A.
- $p \rightarrow q =$ If Alice scores 100% in Major, then Alice gets an A.

Example 2:

- p = Jack inserts a coin of 5 in vending machine.
- q = Vending machine gives a chocolate.
- chocolate.

 $p \rightarrow q =$ If Jack inserts a coin of 5 in vending machine, then vending machine gives a

Some more ways to express $p \rightarrow q$.

- If p, then q.
- ► *q* if *p*.
- p is sufficient for q.
- p implies q.
- ► *q* is necessary for *p*.
- ► Etc.

Is the below proposition true? Yes.

If 5 is a prime number, then 2 + 2 = 4.

Note: Conditional statements in logic do not have a cause-and-effect relationship.

Definition: For a proposition $p \rightarrow q$:

- ▶ $q \rightarrow p$ is called the **converse** of $p \rightarrow q$. ▶ $\neg q \rightarrow \neg p$ is called the **contrapositive** of $p \rightarrow q$. ▶ $\neg p \rightarrow \neg q$ is called the **inverse** of $p \rightarrow q$.

р	<i>q</i>	$p \rightarrow q$	$q \rightarrow p$	¬p	$\neg q$	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
F	F	T	T	T	T	T	T
F	T	T	F	T	F	F	T
T	F	F		F	T	T	F
T	T	T	T	F	F	T	T
Same truth values.							

Same truth values.